

REPORT

21-0414 S

December 23, 2022

Explorations and Geotechnical Engineering Services

Proposed Bridge Replacement George Street over Beaver Brook Keene, New Hampshire

Prepared For: McFarland Johnson, Inc. Attention: Samuel White, P.E. 53 Regional Drive Concord, NH 03301

Prepared By: S. W. Cole Engineering, Inc. 10 Centre Road Somersworth, New Hampshire 03878 T: 603-692-0088

www.swcole.com | info@swcole.com

Geotechnical Engineering | Construction Materials Testing | Special Inspections

TABLE OF CONTENTS

1.0 INTRODUCTION	. 1
1.1 Scope and Purpose	. 1
1.2 Site and Proposed Construction	. 1
2.0 EXPLORATION AND TESTING	. 2
2.1 Explorations	.2
2.2 Laboratory Testing	. 3
3.0 SUBSURFACE CONDITIONS	. 3
3.1 Soil and Bedrock	. 3
3.1.1 West Abutment (B-1)	. 3
3.1.2 East Abutment (B-2)	. 3
3.1.3 Environmental Boring (ENV-1)	.4
3.2 Groundwater	.4
4.0 SEISMIC CONSIDERATIONS	.4
4.1 Bedrock Acceleration and Site Response	.4
4.2 Liquefaction Assessment	. 5
5.0 FOUNDATION EVALUATION AND RECOMMENDATIONS	.5
5.1 General	. 5
5.2 Frost Considerations	.6
5.3 Foundation Options and Discussion	.6
5.4 Foundation Design	. 6
5.4.1 Precast Box Culvert	.6
5.4.2 Spread Footing Foundations	
5.4.3 Micropiles	. 8
5.5 Abutments and Wingwalls	10
5.6 Excavation and Dewatering Considerations	
5.7 Backfill and Compaction	11
5.8 Design Review and Construction Testing	11
6.0 CLOSURE	12

Appendix A	Limitations
Appendix B	Figures
Appendix C	Exploration Logs & Key
Appendix D	Laboratory Test Results

www.swcole.com

21-0414 S

December 23, 2022

McFarland Johnson, Inc. Attention: Samuel White, P.E. 53 Regional Drive Concord, NH 03301

Subject: Explorations and Geotechnical Engineering Services Proposed Bridge Replacement George Street over Beaver Brook Keene, New Hampshire

Dear Sam:

In accordance with our Revised Proposal dated August 2, 2021, we have performed subsurface explorations for the subject project. This report summarizes our findings and geotechnical recommendations, and its contents are subject to the limitations set forth in Appendix A.

1.0 INTRODUCTION

1.1 Scope and Purpose

The purpose of our services was to explore subsurface conditions at the site in order to provide geotechnical recommendations for design of the proposed bridge replacement. Our scope of services included two test borings and one environmental test boring, soils laboratory testing, a geotechnical evaluation of the findings relative to proposed construction, and preparation of this report.

1.2 Site and Proposed Construction

The site is located on George Street at its crossing of Beaver Brook in Keene, New Hampshire. The site consists of an existing 13-foot single-span bridge across Beaver Brook in an east-west direction. Based on the provided plans, site grades are relatively flat along George Street at about Elevation 488 feet. Site grades slope downward to

Beaver Brook at the crossing to about elevation 479 to 480 feet.

Based on correspondence with you, we understand proposed construction will include a new bridge spanning 20 to 30 feet across Beaver Brook. We understand replacement structures under consideration include:

- Concrete box culvert recessed into the brook.
- Three-sided rigid concrete frame supported on spread footings; or
- Shallow stub abutments supported on single row of driven piles.

We understand the new bridge will be constructed on the existing horizontal alignment and have a similar vertical grade as the existing bridge.

2.0 EXPLORATION AND TESTING

2.1 Explorations

Two geotechnical test borings (B-1 and B-2) and one environmental test boring (ENV-1) were made at the site on December 5 and 6, 2022, by S. W. Cole Explorations, LLC. The test borings were advanced utilizing cased rotary-wash drilling techniques. Standard Penetration Testing (SPT) and split-spoon sampling were performed at 2-foot intervals to a depth of 15 feet than at 5-foot intervals, thereafter. Upon encountering a refusal surface, test borings B-1 and B-2 were advanced 5 feet into bedrock using a NQ2 rock core barrel. The exploration locations were selected by S. W. Cole Engineering, Inc. (S.W.COLE) in consultation with Sanborn, Head & Associates, Inc. (SHA) (project environmental consultant) and established in the field by S.W.COLE using taped measurements from existing site features.

Soils in the test borings were screened by SHA using a MiniRAE 2000 photoionization detector (PID). PID results are noted on the boring logs.

The approximate exploration locations are shown on the "Exploration Location Plan," included in Appendix B. Exploration logs and a key to the notes and symbols used on the logs are included in Appendix C. The elevations shown on the logs were estimated based on topographic information shown on the "Exploration Location Plan".

2.2 Laboratory Testing

Soil samples obtained from the explorations were returned to our laboratory for further classification and testing. Gradation and moisture content testing was performed on two select soil samples. Gradation test results are included in Appendix D. Moisture content test results are shown on the boring logs.

3.0 SUBSURFACE CONDITIONS

3.1 Soil and Bedrock

3.1.1 West Abutment (B-1)

Test boring B-1 was preformed on the west side of the existing bridge and encountered a surficial asphalt pavement layer overlying granular fills consisting of loose to dense, brown sand with varying portions of silt and gravel to a depth of 9 feet. The fill was underlain by alluvial deposits of loose to medium dense, brown sand and gravel, with some silt to a depth of 15 feet. Below the alluvial deposit, the test boring encountered glacial till soils consisting of medium dense, gray gravelly sand some silt to a depth of 20 feet where bedrock was encountered. Bedrock recovery was minimal and consisted of hard, slightly weathered, moderately to slightly fractured, fine to medium grained, gray to black Granodiorite, with very close to close, low to high angle joints with a Rock Quality Designation (RQD) of 10% indicating very poor rock quality.

3.1.2 East Abutment (B-2)

Test boring B-2 was made on the east side of the existing bridge and encountered a surficial 1.5 feet of grassed topsoil overlying granular fills consisting of medium dense silty sand with varying portions of gravel to a depth of 7 feet. Below the fill, the test boring encountered alluvial deposits of medium dense to very dense, brown gravelly sand with varying portions of silt to a depth of 17 feet. Below the alluvial deposit, the test boring encountered glacial till soils consisting of very dense, gray silty gravelly fine to medium sand to a depth of 21 feet, where bedrock was encountered. Bedrock consisted of hard, slightly weathered, moderately to slightly fractured, fine to medium grained, gray to black Granodiorite, with very close to close, low to high angle joints. The bedrock sampled had an RQD equal to 62% indicating fair rock quality.

3.1.3 Environmental Boring (ENV-1)

Environmental boring ENV-1 was performed in an open grassed area to the northwest of the bridge and encountered a surficial 1.5 feet of grassed topsoil overlying granular fills consisting of loose to medium dense sand with varying portions of silt and gravel to a depth of 9 feet, overlying very loose to loose, sand and sandy silt (alluvial deposits) to a depth of 15 feet, where the exploration was terminated.

3.2 Groundwater

Free water was observed at depths ranging from 8 to 9 feet in the test borings at the time of exploration work. Long term groundwater information is not available. It should be anticipated that groundwater levels will fluctuate, particularly in response to periods of snowmelt and precipitation, changes in site use and the water level of Beaver Brook.

4.0 SEISMIC CONSIDERATIONS

4.1 Bedrock Acceleration and Site Response

Seismic site class was evaluated in accordance with AASHTO LRFD 2020 Article 3.10.3.1 using the average SPT N-value method. Based on the information obtained in the explorations, the average N-value was between 15 and 50 blows per foot corresponding to an AASHTO Site Class D as defined in AASHTO Table 3.10.3.1-1.

United States Geological Survey (USGS) Seismic Design Parameters program (Version 2.1) was used to obtain the seismic design parameters for the bridge. Based on the assigned site class (AASHTO Site Class D) and the project site coordinates, the software provides the recommended AASHTO Response Spectrum for a 7 percent probability of exceedance in 75 years. The results for the project site are summarized below:

Site Class D Seismic Design Parameters Site Coordinates: N42.944645°, W72.271597°						
Parameter	Design Value					
PGA	0.069 g					
Ss	0.150 g					
S ₁	0.043 g					
F _{pga}	1.60					
Fa	1.60					
Fv	2.40					
As	0.111 g					
S _{DS}	0.240 g					
S _{D1}	0.103 g					
Seismic Zone (based on S_{D1})	Zone 1					

Based on the Acceleration Coefficient S_{D1} =0.103 g and AASHTO Article 3.10.6, this site is assigned to Seismic Zone 1. Per AASHTO Article 4.7.4, single span bridges are not required to be analyzed for seismic loads, however the requirements of AASHTO Articles 4.7.4.4 and 3.10.9 shall apply. Per AASHTO Article 3.10.1 the seismic effects for box culverts and buried structures need not be considered except where they cross active faults. There are no known active faults within the site vicinity.

4.2 Liquefaction Assessment

Liquefaction is typically observed in saturated deposits of loose sands and non-plastic silts subjected to ground shaking most commonly from earthquakes. The foundation soils at the proposed abutments are anticipated to consist of native, medium dense to very dense sand or glacial till. Based on the site soils, we anticipate the risk of seismically induced liquefaction below the foundations is low.

5.0 FOUNDATION EVALUATION AND RECOMMENDATIONS

5.1 General

S.W.COLE has conducted geotechnical engineering evaluations in accordance with 2020 AASHTO LRFD Bridge Design Specifications, 9th Edition (AASHTO) and the NHDOT Bridge Design Manual, 2015 Version 2 Edition with November 2020 revisions (NHDOT BDM).

5.2 Frost Considerations

The 100-year freezing index for the Keene, New Hampshire area is approximately 1,300 Fahrenheit degree-days. Considering this, we recommend spread footing foundations or pile caps and grade beams for the abutments and wing walls have at least 4.5 feet of soil cover to provide frost protection. Riprap for scour protection should not be considered as part of the soil cover.

5.3 Foundation Options and Discussion

We understand the proposed bridge replacement alternatives consist of a box culvert, three-sided rigid frame or pile supported bridge integral abutment bridge.

Subsurface conditions at the site consist of fills overlying native sand and gravel, overlying glacial till mantling bedrock at depths of about 20 to 21 feet. Based on the subsurface findings, it is our opinion that driven piles will be too short to develop lateral resistance depending on the bottom of pile cap elevation. Therefore, we anticipate abutment support by cast-in-place spread footings founded below scour or drilled micropiles are feasible foundation options for the bridge replacement.

Uncontrolled fills were encountered at each abutment extending to depths ranging from 7 to 9 feet below ground surface. Uncontrolled fills and soils containing organic material must be completely removed below foundations and from areas of proposed construction and replaced with compacted fill. It is anticipated that these unsuitable soils will be removed during anticipated excavations for the proposed bridge; however, over-excavations, if needed, should extend out one foot horizontally for each foot of over-excavation (1H:1V bearing splay).

It is anticipated that use of spread footings may require a deeper foundation embedment than frost depth for scour protection, potentially increasing efforts associated with excavation and dewatering. It will be important to properly dewater excavations to allow for observation of the bearing surface.

5.4 Foundation Design

5.4.1 Precast Box Culvert

We anticipate a box culvert will be recessed into the brook and founded on medium dense to very dense sand and gravel (alluvial deposits) or medium dense to very dense

glacial till soils. We recommend precast box culvert be recessed below scour and supported on at least 12 inches of compacted Crushed Stone overlying properly prepared subgrades. We recommend the precast box culvert include toe walls at the inlet and outlet ends to prevent undermining. Based on the subsurface conditions and our understanding of the proposed construction, we recommend the following foundation design parameters:

GEOTECHNICAL FOUNDATION DESIGN PARAMETERS							
Design Frost Depth	4.5 feet						
Strength Limit Sate – Article 10.6.3.1.1							
Nominal Bearing Resistance	12.4 ksf						
Strength Limit Bearing Resistance Factor (AASHTO Table 10.5.5.2.2-1)	0.45						
Factored Bearing Resistance	5.6 ksf						
Estimated Post-Construction Settlement	1.5 inches or less						
Service Limit – AASHTO Table C10.6.2.6.1-1							
Nominal Bearing Resistance	4.0 ksf						
Service Limit Bearing Resistance Factor	1.0						
Factored Bearing Resistance	4.0 ksf						
Estimated Post-Construction Settlement	1.5 inches or less						

5.4.2 Spread Footing Foundations

We anticipate spread footing foundations will likely be founded on medium dense to very dense sand and gravel (alluvial deposits) or medium dense to very dense glacial till soils. We recommend cast-in-place spread footings be founded below scour and supported on at least 12 inches of compacted Crushed Stone overlying properly prepared subgrades. The purpose of the Crushed Stone layer is intended to create a level and stable working mat and provide a media to sump and pump. Voids left by the removal of cobbles or boulders should be backfilled with additional Crushed Stone. Based on the subsurface conditions and our understanding of the proposed construction, we recommend the following foundation design parameters:

GEOTECHNICAL FOUNDATION DESIGN PARAMETERS						
Design Frost Depth	4.5 feet					
Strength Limit Sate – Article 10.6.3.1.1						
Nominal Bearing Resistance	11.7 ksf					
Strength Limit Bearing Resistance Factor (AASHTO Table 10.5.5.2.2-1)	0.45					
Factored Bearing Resistance	5.3 ksf					
Estimated Post-Construction Settlement	1 inch or less					
Service Limit – AASHTO Table C10.6.2.6.1-1						
Nominal Bearing Resistance	5.0 ksf					
Service Limit Bearing Resistance Factor	1.0					
Factored Bearing Resistance	5.0 ksf					
Estimated Post-Construction Settlement	1 inch or less					

We recommend a minimum footing width of 6 feet. S.W.COLE should be given the opportunity to review the proposed foundation layout during final design to adjust our recommendations based on the actual proposed foundation configuration and dimensions.

It is anticipated that use of spread footings may require a deeper foundation embedment than frost depth for scour protection, potentially increasing efforts associated with excavation and dewatering. It will be important to properly dewater excavations to allow for observation of the bearing surface.

5.4.3 Micropiles

We anticipate micropiles will consist of a cased section from the bottom of pile cap down to the top of competent bedrock with an uncased section below. The micropiles will be reinforced with a single, continuously threaded central bar running the full length of the micropile and filled with 5,000 psi Portland cement grout. In accordance with LRFD Article 10.9.1.2, center-to-center micropile spacing should not be less than 30 inches or 3 pile diameters, whichever is greater.

5.4.3.1 Axial Resistance

Rock-socketed micropiles will generally develop axial resistance through side friction in the rock socket. For design, per LRFD Table C10.9.3.5.2-1, we recommend a presumptive nominal grout-to-ground bond resistance of 20 ksf for the granodiorite bedrock. Per LRFD Table 10.5.5.2.5-1, at the strength limit state, axially loaded micropiles shall be designed

using a geotechnical resistance factor ϕ_{stat} of 0.70 provided pile load testing is performed. If no load test is performed, a geotechnical resistance factor ϕ_{stat} of 0.55 shall be used.

Micropile axial resistance is dependent on pile diameter and grout-to-ground bond length. A summary of estimated factored strength-limit axial geotechnical resistances for 7.5 and 9.5-inch diameter micropile with various bond lengths are provided in the following table:

Embedment in Competent Bedrock (ft)	Strength Limit Factored Axi (ki	
	7.5-inch Uncased Diameter ²	9.5-inch Uncased Diameter ³
10	274	347
15	411	520
20	548	694

Notes: 1. Resistance factor of 0.7 used for the strength limit state

2. 8.625-inch OD, 7.625-inch ID casing to top of rock, assumed 7.5-inch diameter rock-socket

3. 10.75-inch OD, 9.75-inch ID casing to top of rock, assumed 9.5-inch diameter rock-socket

Additional micropile grout-to-ground bond lengths may be considered depending on the actual factored design axial loads. S.W.COLE can provide additional input on micropile size once abutment loading has been developed for the proposed structure. Final axial design of micropiles shall be performed by the micropile specialty contractor during construction-phase, based on pile load test results and selected means and methods.

5.4.3.2 Downdrag

We anticipate settlement in the native soils generated from the load applied by embankment fills will be elastic and occur during construction with negligible long-term settlement. Therefore, downdrag is not considered to be an issue.

5.4.3.3 Lateral Resistance

The micropiles will be subjected to lateral loading; therefore, the micropiles shall be evaluated for resistance against combined axial compression and flexure in accordance with LRFD Table Article 10.7.3.9. Lateral resistance can also be derived from the use of battered piles.

5.4.3.4 Service and Extreme Limit State Design

The design of micropiles at the service limit state shall consider tolerable transverse and longitudinal movement of piles and pile group movement considering changes in soil conditions due to scour based on the design flood (Q_{100}). For the service limit state,

resistance factors of φ = 1.0 should be used in accordance with LRFD Article 10.5.5.1. The exception is the overall global stability of the foundation which should be investigated at the Service I load combination and a resistance factor, φ , of 0.65.

Extreme limit state design shall include pile axial compressive resistance, overall global stability of the pile group, pile failure by uplift in tension, and structural failure. The extreme event load combinations are those related to seismic forces, ice loads, debris loads, and hydraulic events. Extreme limit state design shall also check that the nominal pile foundation resistance remaining after scour due to the check flood (Q_{500}) can support the extreme limit state loads. Resistance factors for extreme limit states, per LRFD Article 10.5.5.3, shall be taken as $\varphi = 1.0$ except for uplift of piles, for which the resistance factor, φ_{up} , shall be 0.80 or less per LRFD Article 10.5.5.3.2.

5.5 Abutments and Wingwalls

The material properties will be controlled by the backfill which is anticipated to consist of NHDOT Granular Backfill (Bridge) Item 209. We assume the bridge will be backfilled with free-draining, granular wall backfill resulting in a drained condition (i.e. no hydrostatic pressure) within the wall backfill. Based on the use of a free-draining, granular wall backfill, we recommend design consider the following parameters:

GEOTECHNICAL PARAMETERS FOR ABUTMENT AND WI	NG WALLS
Total Unit Weight of Backfill (γ _t)	125 pcf
Internal Friction Angle of Backfill (NHDOT Granular Backfill Item 209)	32°
Active Lateral Earth Pressure Coefficient (Ka)	0.3
At-Rest Lateral Earth Pressure Coefficient (K _o)	0.5
Passive Lateral Earth Pressure (K _p)	3.3

AASHTO recommends that live load surcharge be applied as a uniform lateral surcharge pressure using an equivalent fill height. Recommendations for equivalent lateral surcharge height are provided in AASHTO Article 3.11.6.4 based on wall height and distance from the wall back face to the edge of traffic.

5.6 Excavation and Dewatering Considerations

The excavations to foundation subgrade will generally encounter granular fills overlying native sands with varying portions of silt and gravel, overlying glacial till and bedrock. The foundation should be underlain with a minimum 6 inches of Crushed Stone (NHDOT #57

Crushed Stone). This will help provide a stable surface from which to construct forms and provide a media from which to collect, sump, and pump groundwater.

Excavations below the water level of Beaver Brook will be difficult and will likely need sheetpiles for groundwater cutoff and river flow diversion to help control groundwater. Controlling the water levels to at least one foot below planned excavation depths will help stabilize subgrades during construction. Surface water should be diverted from entering the foundation excavation.

Excavations must be properly shored and/or sloped to prevent sloughing and caving of the sidewalls during construction. All excavations should be performed in accordance with OSHA requirements. The contractor is responsible for developing an appropriate dewatering and excavation plans to install the foundations and maintain stable subgrades.

5.7 Backfill and Compaction

Embankment fill for approaches and backfill placed adjacent to the new abutments and wing walls should be clean, non-frost susceptible sand and gravel meeting the gradation requirements for NHDOT Granular Backfill (Bridge) Item 209.

Fill should be placed in horizontal lifts and be compacted. Lift thickness should be limited to that which can be thoroughly compacted using small, hand operated compaction equipment to avoid over compaction of material within 3 feet of abutment and wing walls. We recommend fill against the proposed structure and wing walls be compacted to between 95 to 98 percent of its maximum dry density as determined by AASHTO T-99.

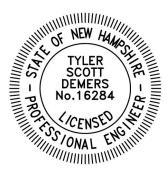
If foundation construction takes place during cold weather conditions, subgrades and foundations must be protected from freezing conditions.

5.8 Design Review and Construction Testing

We recommend S.W.COLE be provided the opportunity to review recommendations in this report and make modifications as necessary once the final design for the replacement structure has been determined. S.W.COLE should be retained to review the final design and specifications to determine that our earthwork and foundation recommendations have been properly interpreted and implemented.

Further, we recommend S.W.COLE be retained to provide soils engineering and testing services during the excavation and foundation phases of the work. This is to observe compliance with the design concepts, specifications, and design recommendations and to allow design changes in the event that subsurface conditions are found to differ from those anticipated prior to the start of construction. S.W.COLE is available to provide testing of soil, concrete, and asphalt construction materials.

6.0 CLOSURE


It has been a pleasure to be of assistance to you with this phase of your project. We look forward to working with you during the construction phase of the project.

Sincerely,

S. W. Cole Engineering, Inc.

Tyler S. Demers, P.E. Project Geotechnical Engineer

TSD:mas

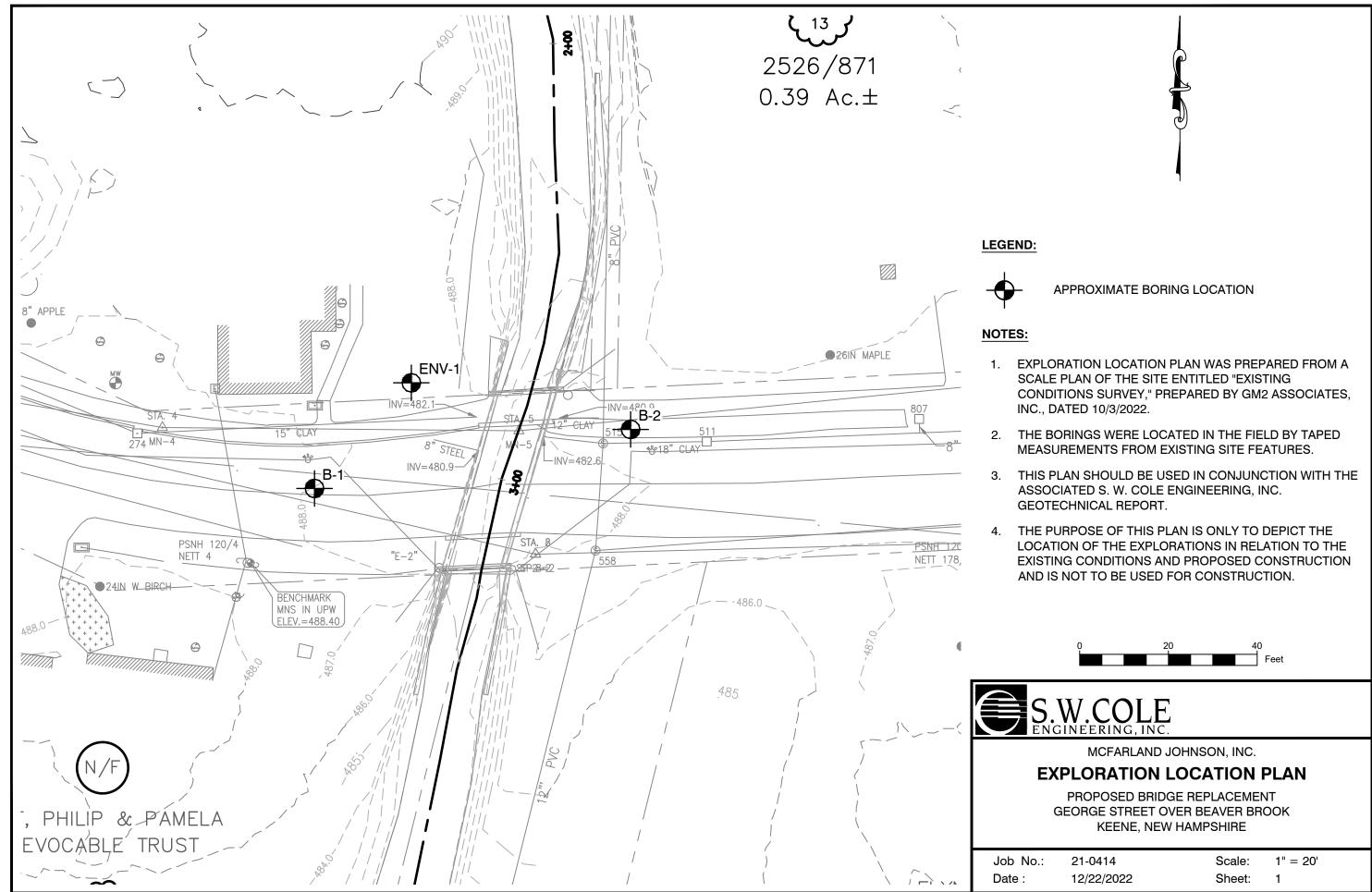
APPENDIX A

Limitations

This report has been prepared for the exclusive use of McFarland Johnson, Inc. for specific application to the Proposed Bridge Replacement on George Street Over Beaver Brook in Keene, New Hampshire. S. W. Cole Engineering, Inc. (S.W.COLE) has endeavored to conduct our services in accordance with generally accepted soil and foundation engineering practices. No warranty, expressed or implied, is made.

The soil profiles described in the report are intended to convey general trends in subsurface conditions. The boundaries between strata are approximate and are based upon interpretation of exploration data and samples.

The analyses performed during this investigation and recommendations presented in this report are based in part upon the data obtained from subsurface explorations made at the site. Variations in subsurface conditions may occur between explorations and may not become evident until construction. If variations in subsurface conditions become evident after submission of this report, it will be necessary to evaluate their nature and to review the recommendations of this report.


Observations have been made during exploration work to assess site groundwater levels. Fluctuations in water levels will occur due to variations in rainfall, temperature, and other factors.

S.W.COLE's scope of services has not included the investigation, detection, or prevention of any Biological Pollutants at the project site or in any existing or proposed structure at the site. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and the byproducts of any such biological organisms.

Recommendations contained in this report are based substantially upon information provided by others regarding the proposed project. In the event that any changes are made in the design, nature, or location of the proposed project, S.W.COLE should review such changes as they relate to analyses associated with this report. Recommendations contained in this report shall not be considered valid unless the changes are reviewed by S.W.COLE.

APPENDIX B

Figures

APPENDIX C

Exploration Logs and Key

							В	ORIN	GΙ	_OG	BORING SHEET:		B- 1 1 of 1
		CLI	CLIENT: McFarland Johnson, Inc.								PROJEC		21-0414
							Replacem	ent			DATE S	_	12/6/2022
S.W.C	COLE	LO	CATION	:_(George	Street, K	eene, Nev	w Hampshire	•		DATE F	INISH:	12/6/2022
LOCA		See Ex	ploration					DN (FT): 488			DGGED BY	: <u>Sean</u>	Hlywa
			V. Cole E ounted M					Matt Bussey		DRILLING METHOD: SAMPLER: Standard Split-Spoon			
	IER TYP							WEIGHT (lbs)				EL: NG	2
			CY FACTO					DROP (inch):	-				
	R LEVEL RAL NO		THS (ft):	7	∠9ft W	ater obse	erved at 9.0) feet on 12/6/	2022				<u> </u>
KEY TO	O NOTES YMBOLS:	<u>Wate</u> ⊻ At ⊻ At	<u>er Level</u> time of Dr Completic fter Drilling	on o		U = Thin V R = Rock	Spoon Samp Valled Tube Core Samp Vane Shear	Sample Rec. le bpf =	= Reco Blows	very LengthWOH = Weight of Hammer q_U = Unper FootRQD = Rock Quality Designation \emptyset = Frid	ld Vane She confined Co tion Angle (I lot Applicabl	mpressive Estimated)	Strength, kips/sq.ft.
					SAMPL	E INFO	RMATION	N	6				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data / PID Readings	Graphic Log	Sample Description & Classification	H ₂ 0 Depth	1	Remarks
										Asphalt Pavement			
-	+		1D	$\left \right $	1-3	24/18	29-21- 19-13	PID=0 ppm		 Dense, brown, Gravelly Silty fine to medium SAND (FILL) 	1		
485	+		2D	X	3-5	24/15	5-6-4-6	PID=0 ppm		3.7 Loose, brown, SILT and fine SAND (Fill)	_		
-	- 5		3D	$\left \right\rangle$	5-7	24/8	13-17- 11-7	PID=.1 ppm		5.0 Medium dense, brown, Gravelly Silty SANE (FILL)	>		
- 480 —	-		4D		7-9	24/3	7-9-7- 11	PID=0 ppm					
-	+ - 10		5D	M	10-12	24/2	5-4-6-4	PID=0 ppm		9.0 Loose to medium dense, brown, SAND and GRAVEL some silt	⊻		
- 475 —	+		6D		12-14	24/7	5-7-7- 10	PID=0 ppm ID 22365s w =12.3 %					
-	- 15		7D		15-17	24/1	15-12- 10-5	PID=0 ppm		15.0 Medium dense, gray, Gravelly SAND some silt (Glacial Till)			
470 — -	+												
- - 465 — -	- 20 - -		1R		20-25	60/15	10			20.0 Bedrock: Hard, slightly weathered, moderately to slightly fractured, fine to medium grained, gray to black, Granodiorit Joints are very close to close, low to high angle. RQD = 10%	e.		
	25			11						Bottom of Exploration at 25.0 feet Probable Boulder or Bedrock	I	1	
bounda	ry betwee	n sòil ty	ent approx	ition	s may								
made a Fluctua other fa	t times an tions of gr	d under oundwa those p	eadings ha r conditions ater may oc present at t	s sta ccur	ated. due to						BORING	NO ·	B- 1

							В	ORIN	G I	_OG	BORING SHEET:	NO.:	B- 2 1 of 1
		СЦ	ENT: N	ИcF	arland .	Johnson,	Inc				PROJEC	T NO.	21-0414
							Replaceme	ent			DATE ST		12/5/2022
S.W.C	COLE							w Hampshire			DATE FI	NISH:	12/5/2022
LOCA		See Ex	ploration					N (FT): 488			GGED BY:	Sean I	Hlywa
			N. Cole E					Matt Bussey		DRILLING METHOD: Cased Boring			
			lounted N utomatic					/OD: <u>N/A / N</u> WEIGHT (lbs)		SAMPLER: Standard Split-Spoon CASING ID/OD: 4 in / 4 1/2 in CC	RE BARRE	L: NQ	2
			CY FACTO		0.91			DROP (inch):					
			ſHS (ft):	_ <u> </u>	.28ft W	ater obse	rved at 8.0) feet on 12/5/2	2022				
	RAL NO		er Level	_		D = Split S	Spoon Samp	ble Pen. :	= Pen	tration Length WOR = Weight of Rods S_v = Fiel	d Vane Shea	r Strenath	. kips/sa.ft.
AND S	YMBOLS:	I A	t time of Di t Completio fter Drilling	on of		U = Thin V R = Rock		e Rec. =	= Reco Blows	very Length WOH = Weight of Hammer q_U = Unc per Foot RQD = Rock Quality Designation Ø = Frict		pressive stimated)	Strength, kips/sq.ft.
					SAMPL	LE INFO	RMATION	١	Log				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data / PID Readings	Graphic L	Sample Description & Classification	H ₂ 0 Depth	F	Remarks
			1D	\mathbf{H}	0-2	24/8	6-6-7-7	PID=0 ppm	<u>× 1</u> /	Grassed Topsoil			
-	t			X	I				1/ · · ·	1.5 Madium danage brown Crowelly Silty SAND			
-	 		2D	Ħ	2-4	24/2	10-8-6-	PID=0 ppm		 Medium dense, brown, Gravelly Silty SAND (Fill) 			
485 -	Ŧ			X	I								
-	+			Ĥ	I								
-	- 5		3D	Н	5-7	24/13	20-12-	PID=.7 ppm		5.0 Medium dense, brown Silty fine to medium			
-	+			X	I		13-17			SAND some gravel (Fill)			
-	+		4D	H	7-9	24/13	27-11-	PID=.3 ppm		7.0 Medium dense, brown, Silty Gravelly SAND			
480 -	+			X	1		15-13				ĮΫ		
-	ł			Н	1								
-	- 10		5D	H	10-12	24/13	17-13-	PID=.8 ppm		10.0 Dense, brown, Gravelly SAND some silt			
-	+			X	I		19-20						
-	ł		6D	H	12-14	24/16	14-33-	PID=.1 ppm		12.0 Very dense, brown, SAND trace gravel trace	<u>, </u>		
475 -	+			X	1		21-16	ID 22366s w =18.1 %		silt			
-	+			А	1								
-	- 15		7D	H	15-17	24/1	20-15-			15.0 Cobbles			
-	+			X	1		9-9						
-	+			А	I					17.0 Very dense, gray, Silty Gravelly fine to			
470 -	+				1					medium SAND (Glacial Till)			
-	+				I								
-	- 20		8D	\mathbb{H}	20-21	12/2	11-7-						
-	ł		1R	Å	21.1-	60/58	50/0" 62			21.0 Bodrook: Hard, alightly weathered			
-	ł				26.1	00/00	02			Bedrock: Hard, slightly weathered, moderately to slightly fractured, fine to			
465 -	+				I					medium grained, gray to black, Granodiorite Joints are very close to close, low to high			
-	+				l					angle. RQD = 62%			
-	- 25				I								
	-			Ш					K				
										Bottom of Exploration at 26.1 feet Bedrock			
Stratific	ation lines	repres	ent approx	xima	te	T							
bounda be grad	ry betwee ual. Wate	n soil ty r level r	/pes, trans eadings ha	ition: ave b	s may been								
Fluctua	tions of gr	oundwa	r condition ater may o present at	ccur	due to					r			
measur	ctors than ements w	ere ma	present at de.	uië t	inte	1					BORING	NO.:	B- 2

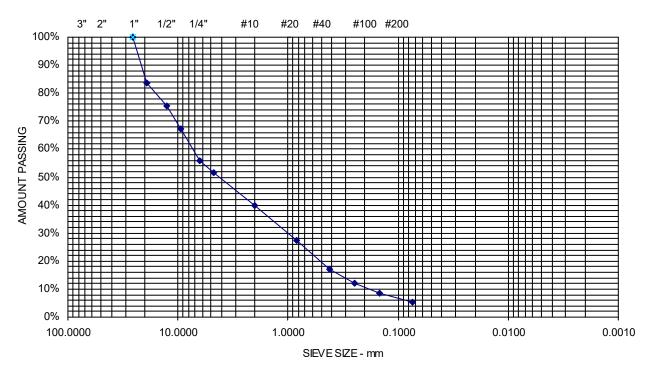
		BORING LOG BORING NO.:										12/5/2022	
LOCA DRILL RIG T HAMN HAMN WATE	TION: .ING CO.: YPE: MER TYP MER EFF	See Ex <u>S. V</u> rack M E: <u>Au</u> CIENC DEPT	ploration V. Cole E ounted N itomatic	Explo Iobil OR:		48 /	driller: Auger Id Hammer Hammer	M (FT):488 Matt Bussey /OD:2 1/4 ii WEIGHT (Ibs) DROP (inch): 0 feet on 12/5/2	/ n / 5 5 : <u>14</u> 30	DRILLING METHOD: Hollow Stem /8 in SAMPLER: Standard Split-Spoon	DGGED BY Auger DRE BARR		
	O NOTES SYMBOLS:	∑ At ∑ At	er <u>Level</u> time of Di Completio ter Drilling	on o	g f Drilling	U = Thin V R = Rock	Spoon Samj Valled Tube Core Samp Vane Shear	Sample Rec. le bpf =	= Reco Blows	wery Length WOH = Weight of Hammer q_U = Unper Foot RQD = Rock Quality Designation Ø = Friction		mpressiv Estimate e	
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	SAMPL Depth (ft)	E INFO Pen./ Rec. (in)	RMATION Blow Count or RQD	N Field / Lab Test Data / PID Readings	Graphic Log	Sample Description & Classification	H ₂ 0 Depth		Well Diagram
485 -	-		1D 2D		0-2 2-4	24/8 24/6	2-3-2-2 2-5-3-3	PID=0 ppm		Grassed Topsoil 1.5 Loose, brown, Silty fine SAND (Fill)		AND AND	Road Box
480 -	- 5 		3D 4D		5-7 7-9	24/12 24/6	9-12- 19-19 12-10- 14-8	PID=.5 ppm PID=.2 ppm		5.0 Medium dense to dense, brown, Gravelly fir to medium SAND some silt (Fill)	ne		Drill Spoils
475 -	- 10 		5D 6D		10-12 12-14	24/24 24/17	3-4-4-2 3-3- 2/12''	PID=.1 ppm PID=0 ppm		 Loose, brown, SAND some gravel some silt Very loose, gray, fine Sandy SILT Loose, brown, Silty SAND Developed a gray for Sandy SILT 	 		Filter Sand
	15			Δ						Bottom of Exploration at 15.0 feet			
bounda be grad made a Fluctua other fa	ary betwee lual. Wate at times an ations of gr	n soil ty r level re d under oundwa those p	ent approx pes, trans eadings ha condition ater may op present at de.	ition ave b s sta ccur	s may been ated. due to						BORING	• NO.:	ENV-1

APPENDIX D

Laboratory Test Results

Report of Gradation

ASTM C-117 & C-136



 Project Name
 KEENE NH - GEORGE STREET OVER BEAVER BROOK BRIDGE REPLACEMENT - GEOTECHNICAL ENGINEERING SERVICES

 Client
 MCFARLAND JOHNSON INC.

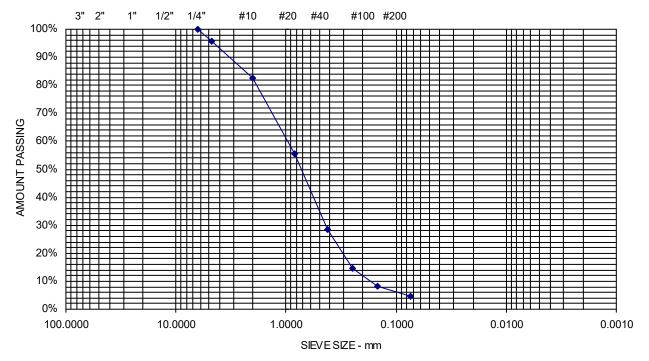
Project Number	21-0414
Lab ID	22365S
Date Received	12/13/2022
Date Completed	12/19/2022
Tested By	BRADLEY GERSCHWILER

Material Source B-1, 6D, 12.0'-14.0'

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
25.0 mm	1"	100	
19.0 mm	3/4"	84	
12.5 mm	1/2"	75	
9.5 mm	3/8"	67	
6.3 mm	1/4"	56	
4.75 mm	No. 4	52	48.4% Gravel
2.00 mm	No. 10	40	
850 um	No. 20	27	
425 um	No. 40	17	46.4% Sand
250 um	No. 60	12	
150 um	No. 100	8	
75 um	No. 200	5.2	5.2% Fines

Comments: Moisture Content = 12.3%

Report of Gradation


ASTM C-117 & C-136

 Project Name
 KEENE NH - GEORGE STREET OVER BEAVER BROOK BRIDGE REPLACEMENT - GEOTECHNICAL ENGINEERING SERVICES

 Client
 MCFARLAND JOHNSON INC.
 Project Number21-0414Lab ID22366SDate Received12/13/2022Date Completed12/19/2022Tested ByBRADLEY GERSCHWILER

Material Source B-2, 6D, 12.0'-14.0'

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
6.3 mm	1/4"	100	
4.75 mm	No. 4	96 4	.4% Gravel
2.00 mm	No. 10	83	
850 um	No. 20	55	
425 um	No. 40	29 9	1% Sand
250 um	No. 60	14	
150 um	No. 100	8	
75 um	No. 200	4.6 4	.6% Fines

Comments: Moisture Content = 18.1%

Sheet